A method for approximating pairwise comparison matrices by consistent matrices

نویسنده

  • János Fülöp
چکیده

In several methods of multiattribute decision making, pairwise comparison matrices are applied to derive implicit weights for a given set of decision alternatives. A class of the approaches is based on the approximation of the pairwise comparison matrix by a consistent matrix. In the paper this approximation problem is considered in the least-squares sense. In general, the problem is nonconvex and difficult to solve, since it may have several local optima. In the paper the classic logarithmic transformation is applied and the problem is transcribed into the form of a separable programming problem based on a univariate function with special properties. We give sufficient conditions of the convexity of the objective function over the feasible set. If such a sufficient condition holds, the global optimum of the original problem can be obtained by local search, as well. For the general case, we propose a branch-and-bound method. Computational experiments are also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Common Weight Multi-criteria Decision analysis-data Envelopment Analysis Approach with Assurance Region for Weight Derivation from Pairwise Comparison Matrices

Deriving weights from a pairwise comparison matrix (PCM) is a subject for which a wide range of methods have ever been presented. This paper proposes a common weight multi criteria decision analysis-data envelopment analysis (MCDA-DEA) approach with assurance region for weight derivation from a PCM. The proposed model has several merits over the competing approaches and removes the drawbacks of...

متن کامل

Heuristic for Approximating an Inconsistent Pairwise Comparison Matrix

In several multiobjective decision problems Pairwise Comparison Matrices (PCM) are applied to evaluate the decision variants. The problem that arises very often is inconsistency of given PCM. In such a situation it is important to approximate the PCM with a consistent one. The most common way is to minimize the Euclidean distance between the matrices. In the paper we consider minimization of th...

متن کامل

On pairwise comparison matrices that can be made consistent by the modification of a few elements

Pairwise comparison matrices are often used in Multi-attribute Decision Making for weighting the attributes or for the evaluation of the alternatives with respect to a criteria. Matrices provided by the decision makers are rarely consistent and it is important to index the degree of inconsistency. In the paper, the minimal number of matrix elements by the modification of which the pairwise comp...

متن کامل

Efficient weight vectors from pairwise comparison matrices

Pairwise comparison matrices are frequently applied in multi-criteria decision making. A weight vector is called efficient if no other weight vector is at least as good in approximating the elements of the pairwise comparison matrix, and strictly better in at least one position. A weight vector is weakly efficient if the pairwise ratios cannot be improved in all nondiagonal positions. We show t...

متن کامل

Inverse Sensitive Analysis of Pairwise Comparison Matrices

In the analytic hierarchy process (AHP), the consistency of pairwise comparison is measured by the consistency index (CI) value of pairwise comparison matrices. The CI value is defined by the size and the principal eigenvalue of comparison matrix, and the larger the CI value is, the less consistent pairwise comparison is. In this paper, we propose the estimation method of consistency intervals,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2008